Robohub.org
 

Exploring ROS2 using wheeled Robot – #3 – Moving the robot

by
30 November 2021



share this:

By Marco Arruda

In this post you’ll learn how to publish to a ROS2 topic using ROS2 C++. Up to the end of the video, we are moving the robot Dolly robot, simulated using Gazebo 11.

You’ll learn:

  • How to create a node with ROS2 and C++
  • How to public to a topic with ROS2 and C++

1 – Setup environment – Launch simulation

Before anything else, make sure you have the rosject from the previous post, you can copy it from here.

Launch the simulation in one webshell and in a different tab, checkout the topics we have available. You must get something similar to the image below:

2 – Create a topic publisher

Create a new file to container the publisher node: moving_robot.cpp and paste the following content:

#include <chrono>
#include <functional>
#include <memory>

#include "rclcpp/rclcpp.hpp"
#include "geometry_msgs/msg/twist.hpp"

using namespace std::chrono_literals;

/* This example creates a subclass of Node and uses std::bind() to register a
 * member function as a callback from the timer. */

class MovingRobot : public rclcpp::Node {
public:
  MovingRobot() : Node("moving_robot"), count_(0) {
    publisher_ =
        this->create_publisher("/dolly/cmd_vel", 10);
    timer_ = this->create_wall_timer(
        500ms, std::bind(&MovingRobot::timer_callback, this));
  }

private:
  void timer_callback() {
    auto message = geometry_msgs::msg::Twist();
    message.linear.x = 0.5;
    message.angular.z = 0.3;
    RCLCPP_INFO(this->get_logger(), "Publishing: '%f.2' and %f.2",
                message.linear.x, message.angular.z);
    publisher_->publish(message);
  }
  rclcpp::TimerBase::SharedPtr timer_;
  rclcpp::Publisher::SharedPtr publisher_;
  size_t count_;
};

int main(int argc, char *argv[]) {
  rclcpp::init(argc, argv);
  rclcpp::spin(std::make_shared());
  rclcpp::shutdown();
  return 0;
}QoS (Quality of Service)

Similar to the subscriber it is created a class that inherits Node. A publisher_ is setup and also a callback, although this time is not a callback that receives messages, but a timer_callback called in a frequency defined by the timer_ variable. This callback is used to publish messages to the robot.

The create_publisher method needs two arguments:

  • topic name
  • QoS (Quality of Service) – This is the policy of data saved in the queue. You can make use of different middlewares or even use some provided by default. We are just setting up a queue of 10. By default, it keeps the last 10 messages sent to the topic.

The message published must be created using the class imported:

message = geometry_msgs::msg::Twist();

We ensure the callback methods on the subscribers side will always recognize the message. This is the way it has to be published by using the publisher method publish.

3 – Compile and run the node

In order to compile we need to adjust some things in the ~/ros2_ws/src/my_package/CMakeLists.txt. So add the following to the file:

  • Add the geometry_msgs dependency
  • Append the executable moving_robot
  • Add install instruction for moving_robot
find_package(geometry_msgs REQUIRED)
...
# moving robot
add_executable(moving_robot src/moving_robot.cpp)
ament_target_dependencies(moving_robot rclcpp geometry_msgs)
...
install(TARGETS
  moving_robot
  reading_laser
  DESTINATION lib/${PROJECT_NAME}/
)

We can run the node like below:

source ~/ros2_ws/install/setup.bash
ros2 run my_package

Related courses & extra links:

The post Exploring ROS2 using wheeled Robot – #3 – Moving the Robot
appeared first on The Construct.




The Construct Blog





Related posts :



Robot Talk Episode 42 – Thom Kirwan-Evans

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Thom Kirwan-Evans from Origami Labs all about computer vision, machine learning, and robots in industry.
25 March 2023, by

Resilient bug-sized robots keep flying even after wing damage

New repair techniques enable microscale robots to recover flight performance after suffering severe damage to the artificial muscles that power their wings.
23 March 2023, by

How drones for organ transportation are changing the healthcare industry

The healthcare drone industry has witnessed a dramatic surge in the last couple of years. In 2020, the market grew 30% and is expected to grow from $254 million in 2021 to $1,5 billion in 2028.
21 March 2023, by

Robotic bees and roots offer hope of healthier environment and sufficient food

Miniature robots that mimic living organisms are being developed to explore and support real-life ecosystems.
18 March 2023, by

Robot Talk Episode 41 – Alessandra Rossi

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Alessandra Rossi from the University of Naples all about social robotics, theory of mind, and robots playing football.
17 March 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association